The subspace iteration method – Revisited

نویسنده

  • Klaus-Jürgen Bathe
چکیده

The objective in this paper is to present some recent developments regarding the subspace iteration method for the solution of frequencies and mode shapes. The developments pertain to speeding up the basic subspace iteration method by choosing an effective number of iteration vectors and by the use of parallel processing. The subspace iteration method lends itself particularly well to shared and distributed memory processing. We present the algorithms used and illustrative sample solutions. The present paper may be regarded as an addendum to the publications presented in the early 1970s, see Refs. [1,2], taking into account the changes in computers that have taken place. 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Stability of convective flows in cavities: Solution of benchmark problems by a low-order finite volume method

A problem of stability of steady convective flows in rectangular cavities is revisited and studied by a second-order finite volume method. The study is motivated by further applications of the finite volumebased stability solver to more complicated applied problems, which needs an estimate of convergence of critical parameters. It is shown that for low-order methods the quantitatively correct s...

متن کامل

A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation

Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...

متن کامل

On Variations of Power Iteration

The power iteration is a classical method for computing the eigenvector associated with the largest eigenvalue of a matrix. The subspace iteration is an extension of the power iteration where the subspace spanned by n largest eigenvectors of a matrix, is determined. The natural power iteration is an exemplary instance of the subspace iteration, providing a general framework for many principal s...

متن کامل

The Chebyshev iteration revisited

Compared to Krylov space methods based on orthogonal or oblique projection, the Chebyshev iteration does not require inner products and is therefore particularly suited for massively parallel computers with high communication cost. Here, six different algorithms that implement this method are presented and compared with respect to roundoff effects, in particular, the ultimately achievable accur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012